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I. INTRODUCTION

The problem of Visual Question Answering
(VQA) offers a difficult challenge to the fields
of computer vision (CV) and natural language
processing (NLP) – it is jointly concerned with
the typically CV problem of semantic image un-
derstanding, and the typically NLP problem of
semantic text understanding. In [29], Geman et
al. describe a VQA-based “visual turing test" for
computer vision systems, a measure by which
researchers can prove that computer vision systems
adequately “see", “read", and reason about vision
and language.

The task itself is simply put - given an input
image and a text-based query about the image
(“What is next to the apple?" or “Is there a chair
in the picture"), the system must produce a natural-
language answer to the question (“A person" or
“Yes"). A successful VQA system must under-
stand an image semantically, understand natural
language input, and construct a response given its
visual, textual, and logical understanding of the in-
put image and text. As the problem involves image
understanding as well as language understanding,
the VQA problem has a unique inherent challenge;
VQA methods must combine the techniques used
in the natural language processing communities
and those used in the computer vision communi-
ties, two communities that have evolved separately
and in parallel. Bridging both the lessons learned
in CV and NLP research towards one common goal
is no trivial task.

A. Problem Variations
The VQA problem specification does not for-

mally require any particular question or answer
type – a dataset or method sufficiently addresses
VQA so long as it semantically answers questions
about images. Thus, there is a large variety of and
overlap between question/answer formats among
datasets and methods. Several datasets, like the

VQA dataset [1] and the Visual 7W dataset [20],
provide questions in both multiple choice and
open-ended formats. Several models, such as [8],
provide several variations of their system to solve
more than one question/answer type.
Binary. Given an input image and a text-based
query, these VQA systems must return a binary,
“yes/no" response. [29] proposes this kind of VQA
problem as a “visual turing test" for the computer
vision and AI communities. [5] proposes both a
binary, abstract dataset and system for answering
questions about the dataset.
Multiple Choice. Given an input image and a text-
based query, these VQA systems must choose the
correct answer out of a set of answers. [20] and [8]
are two systems that have the option of answering
multiple-choice questions.
“Fill in the blank". Given an input image and
an incomplete sentence with blanks, these VQA
systems must fill in the blanks in the sentnece.
Unlike other VQA sub-problems, this one does not
provide one query, it provides essentially a series
of declarative questions (where each blank in the
sentence is one question). Visual MadLibs creates
a system for this kind of problem [6]. While this is
a less popular VQA problem than the others, most
VQA models could be adapted to fit this style of
question.
Open-Ended. The open-ended, free-form VQA
task, first proposed formally by Antol et al. in
[1], is not a disjoint task from the previous tasks
(binary, multiple choice, fill in the blank, visual
dialog), but primarily refers to the open-endedness
of the questions themselves – making the “natural"
in the natural language inputs more prominent.
Rather than reasoning about structured, templated
questions and finite, discrete objects and relation-
ships, the goal of open-ended VQA is to suffi-
ciently answer any open-ended question. To this
end, there has been as significant amount of work
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towards crafting open-ended VQA datasets [1] [20]
[23] [24] [46].

B. Related Research

Several problems in the broader semantic scene
understanding area overlap with VQA: automatic
image captioning [2], physical scene understanding
[47] [48] [49], and scene classification [50]. Auto-
matic image captioning covers the same intersec-
tion of natural language processing and computer
vision as VQA does, but is a significantly easier
task as the “problem" is known in advance –
that is, the computer knows it must generate a
human-readible description of an unknown input
image, whereas in VQA the computer does not
know the query before runtime. Physical scene
understanding (reasoning about the physics of an
image or video) is similar to VQA in that both
require the computer to reason about the objects
in a scene and their relationship to each other –
however, in physical scene understanding (unlike
in VQA), the problem is largely physics-based
and doesn’t require much, if any, natural language
processing. Lastly, scene classification and location
recognition often use similar techniques to some
in VQA – in particular, scene graphs are very
popular for scene classification, and several VQA
approaches use scene graphs as well. However,
the VQA problem requires more complex scene
reasoning and natural language processing than
scene classification generally does.

On the NLP side, the problem of text-based
question answering is similar to the question-
answering portion of VQA, but does not require
any visual reasoning. In the robotics community,
the problem of conversational robotic agents over-
laps with that of VQA in that there is frequently
a text-based and image-based reasoning compo-
nent [52] [51]. However, research in that area
has largely been domain-constrained in either the
acceptable language inputs or the application.

II. DATASETS

There are several VQA datasets, which range in
input type (e.g., real-world vs. synthetic images)
and response type (e.g., constrained vs. free-form).
Earlier datasets (DAQUAR [21], COCO-QA [19])

constrict their question types to one of several cat-
egories – DAQUAR contains generated template-
based questions and human-submitted questions
about basic colors, numbers, or object categories;
COCO-QA contains generated questions about ob-
ject identification, number, color, and location.
Later datasets (Visual7W [20], VQA [1]) broaden
the types of questions that can be asked to be more
free-form and natural. In parallel, some specialized
datasets have also been released: Tally-QA [25]
focuses on counting questions only, and OK-VQA
[27] focuses on questions that require external
knowledge to answer correctly. A few sample
questions from these datasets can be seen in Figure
1.

While the complexity of dataset questions
grows, several authors point out an inherent bias
found in VQA datasets that artificially inflate
model accuracy and mislead authors into believing
their models “understand" language and vision
when they’re just exploiting biases [22]. To this
end, there has been some work in modifying ex-
isting datasets [23] [24] and creating new datasets
[46] to combat the bias problem.

A. Towards Question Complexity

DAQUAR. The DAQUAR dataset [21] contains
6794 training and 5674 test question-answer pairs,
where the image portion of each question-answer
pair is sourced from the NYU-Depth V2 dataset,
which contains roughly 1500 RGBD images of in-
door scenes and corresponding annotated semantic
segmantations with 894 object classes. DAQUAR
contains two configurations – one where 894 ob-
ject classes are used, as in the original NYU
dataset, and one where 37 object classes are used,
where the 37 object classes are created by the
DAQUAR authors applying an image segmentation
algorithm to the NYU dataset. The dataset contains
two types of question-answer pairs – synthetic
question-answer pairs, which are automatically
generated from a set of question templates, and
human question-answer pairs, which are generated
by 5 participants instructed to provide questions
and answers about either basic colors, numbers, or
object categories.
COCO-QA. The COCO-QA dataset [19] contains
123,287 images and over 10,000 questions, using
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(a) Visual7W sample questions, where the top two images
show a multiple-choice question and the bottom two show
open-ended questions

(b) Example VQA questions, where the top image is an
example of a real photo and the bottom image is an example
of a synthetic scene

(c) TallyQA sample questions, where the top question is an
example of a “simple" counting question and the bottom is an
example of a “complex" counting question

(d) OK-VQA sample questions, with corresponding knowledge
categories

Fig. 1: Sample Questions from Earlier Datasets
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images from the MS COCO dataset [44]. The
answers are only one word, and rather than using
human-created question-answer pairs, the authors
generated question-answer pairs from image cap-
tions, which has the benefit of creating more
organic, human-like questions and answers. Gen-
erated questions fall into one of four categories:
object (identifying what an object is), number
(identifying a quantity for an object), color, and
location.
Visual7W. The Visual7W dataset [20] contains, in
addition to an image and question-answer pairs,
object groundings for objects in the image – a
link between an object mentioned in a question-
answer pair and a bounding box in an image.
Including object grounding alleviates the problem
of coreference ambiguity [45], wherein a question
refers to one of multiple possible objects in the
image. Visual7W questions fall into one of 7 "W"s:
what, where, when, who, why, how and which. The
dataset contains 327,939 question-answer pairs and
561,459 object groundings on 47,300 COCO im-
ages [25].
VQA. Larger and more open-ended than previ-
ous datasets, the VQA dataset [1] contains two
parts – a real-world dataset with 207,721 images
from the MS COCO dataset [44], and an abstract
scene dataset with 50,000 scenes. Compared to
previous datasets such as [29], COCO-QA [19],
and DAQAUR [21], the VQA dataset does not
draw questions from a fixed set of colors, object
categories, object-to-object relationships, question
templates, etc., but rather contains free-form ques-
tions and answers provided by humans. Each input
image or scene has three corresponding input ques-
tions, and each question is answered by 10 human
participants, leading to a total of over 750,000
questions and over 10 million answers.
Tally-QA. Compared to the previous datasets, the
Tally-QA dataset [25] focuses only on counting-
based questions. Questions are split into Test-
Simple and Test-Complex, where the former fo-
cuses on simple counting questions (e.g., “How
many giraffes are there") and the latter focuses
on complex counting questions (e.g., “How many
dogs are eating"). The dataset contains 19,500
complex questions for 17,545 images, and provides
more than twice as many complex counting ques-

tions than previous datasets.
OK-VQA. The OK-VQA [27] dataset contains
only image/question pairs that require external
knowledge to be able to answer. Compared to pre-
vious datasets, these questions are more complex
to answer because there is not sufficient enough
information to answer them in the query image.
To answer these questions, the VQA system needs
to learn what information is necessary to answer
the question, determine how to retrieve that in-
formation from an outside source, and incorporate
that information into a suitable answer. OK-VQA
contains 14,000 questions that cover a variety of
categories such as science and technology, sports
and recreation, and geography, history, language,
and culture.

B. Towards Eliminating Dataset Bias

The VQA problem itself is particularly suscepti-
ble to dataset bias. Several papers draw a compar-
ison between VQA performance and a story about
Clever Hans, a horse who seemed to understand
and be capable of answering math problems, but
who actually was just reacting to the subtle cues
of his trainer and human observers [41] [42] [43].
Likewise, many VQA systems don’t truly under-
stand images and language, but are rather just
exploiting inherent biases in their training datasets
[42] [23] [22] [24] [46]. For example, “tennis"
is the correct answer for 41% of “What sport
is.." questions and “2" is the correct answer for
39% of counting questions [23]. Further, there is
a strong visual priming bias in human-generated
VQA datasets, where participants tend to only
ask questions about objects in images that contain
those objects (e.g., Answering “Yes" to “Do you
see..." achieves an 87% accuracy) [23].

In [22], Jabri et al. show that a VQA system
designed to exploit dataset biases perform compar-
atively with, if not better than, state-of-the-art ap-
proaches for multiple-choice tasks on the Visual7W
dataset. Their system takes an (image, question,
answer) triplet as inputs, represents the image as
a feature vector computed by running the image
through a pre-computed CNN, and represents the
question and answers as average word2vec em-
beddings. Then, all the representations are con-
catenated and used to train a classification model
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that predicts if the triplet is correct. They compare
their model against state-of-the-art VQA models
and find that, if given all three inputs (Answer,
Question, and Image), their model achieves state-
of-the-art performance in classifying the triplet as
correct or not. If given just (Answer, Question)
tuples, their model performs competitively by ex-
ploiting the most frequent Q-A pairs.

In [23], Goyal et al. propose VQA v2. This
dataset builds on top of the original VQA dataset
[1] to create a balanced dataset with reduced bias
due to language priors. For each (I, Q, A) (Image,
Quesion, Answer) triplet in their dataset, they ask
a human participant to identify an image I’ that
is similar to I but where the answer to Q for that
image is not A. By creating a uniform answer dis-
tribution across the dataset and providing counter-
examples for each question, their dataset “forces"
the computer to consider the visual content.

In [24], Agrawal et al. propose VQA-CP v1 and
VQA-CP v2 (Visual Question Answering under
Changing Priors), two splits of the VQA v1 and
VQA v2 datasets, respectively. These split datasets
are created by re-organizing the original training
and evaluation datasets so that the distribution
of answers for each question type is different in
the test and train sets. Their intuition behind this
change is that a good VQA model should be able
to correctly answer a question from the test dataset
even though the training dataset might have had a
different language prior (e.g., “White" is the most
common color in the train dataset, but “Black" is
the correct answer in the test dataset). The authors
also show that performance for several existing
VQA models drop significantly when compared
against the CP datasets, compared to the original
VQA datasets.

In [46], Hudson et al. identify that the dataset
proposed in [23] fails to address open questions,
leading to an unbalanced dataset, and that the
datasets proposed in [24] unfairly punish models
for learning properties of the training data – they
argue that “making an educated guess" about the
data is in fact a desirable strategy for models to
exhibit. Their dataset, GQA, focuses on real-world
reasoning and compositional question answering.
Each image is annotated with a dense scene graph
that represents the objects, attributes, and relation-

ships between objects that exist in the image. Each
question is a program which lists the reasoning
steps needed to arrive at the right answer. They
argue that the enabling such strict structure is
advantageous because they can have very tight
control over their answer distribution and allow
better assessment of VQA model performance.

Their dataset construction method is four-fold:

1) Normalize and augment the Visual Genome
Scene Graph annotations, which are anno-
tated with free-form natural language

2) Generate questions by iterating over 524
question “patterns" and the scene graph

3) Generate a functional representation of each
question (e.g., “What color is the apple on
the white table?" is equivalent to “select:
table, filter: white, relate(subject,on): apple,
query:color")

4) Sample and balance from generated ques-
tions to create a balanced answer distribution
across the dataset

III. METHODS

VQA methods can generally be grouped into
four categories: language-image (or joint) embed-
dings, attention mechanisms, compositional mod-
els, and knowledge-based models. Because VQA
research has exploded in popularity in the past few
years and a lot of work was completed in parallel,
a lot of models use overlapping methods – the four
groupings are not definitive.

A. Language-Image Embedding

Approaches in the language-image embedding
category combine CNNs and RNNs to learn a joint
embedding for both the input text and the input
image in a shared feature space. Typically, a CNN
pre-trained on an object recognition dataset is used
to recognize objects, whereas an RNN is pre-
trained on natural language inputs. By keeping the
image representation and language representation
in the same feature space, the VQA system can
then create one classifier.
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Fig. 2: iBOWIMG architecture

iBOWIMG. In [7], Zhou et al. propose a VQA
baseline using a joint embedding approach. Their
approach uses a bag of words for text features, and
features from GoogLeNet as visual features. An
overview of their network can be seen in Figure 2.

First, they convert the input words into one-hot
vectors – a binary vector of length dictionary_size
that has only one non-zero vector to identify the
word. These vectors are piped into a word em-
bedding layer to turn into word features. Word
features are concatenated with image features and
sent to a softmax layer to predict the answer class.
Essentially, their model functions as a multi-class
regression model.

The model is trained and evaluated on the
COCO dataset, on open-ended and multiple-choice
questions. The authors show that, despite the sim-
plicity of their model (it takes “10 lines of code in
Torch" to create), their performance is comparable
to previously proposed, more complex models.

Fig. 3: Neural-Image-QA architecture

Neural-Image-QA. In [10], Malinowski et al.
were inspired by the performance of CNNs for
image classification tasks and that of LSTMs for
sequence prediction tasks to create a CNN and
LSTM-based joint embedding model for VQA.

Their method analyses an image with a CNN and
feeds a question and visual representation of the
image into an LSTM network. Both the CNN and
LSTM are trained together. An overview of their
method can be seen in Figure 3.

In their problem scenario, each question can
have a multiple-word answer, which informs the
design of their system. First, they formulate the
general VQA problem as predicting an answer a
given an image x and a question q:

a = max
a∈A

p(a|x, q;θ)

where θ is a vector of all parameters to learn
and A is the set of all possible answers. However,
because their problem can have answers of more
than one word, they modify the problem like:

at = max
a∈V

p(a|x, q,At−1;θ)

where at are words from a vocabulary V and
At−1 is the set of previous predicted words. Thus,
the re-formulates the problem as one of predicting
an answer sequence from a vocabulary.

Their method first represents both question and
answer vectors with a one-hot vector encoding.
Then, question and image features are put through
an “encoder" LSTM to get a feature vector of
fixed-size, which is passed to a “decoder" LSTM
that predicts the answer, one word per pass.

The approach used in this paper is frequently
considered the true baseline result for VQA meth-
ods.

Fig. 4: MQA architecture

mQA. In [9], Gao et al. use an LSTM to extract
a question representation, a CNN to extract vi-
sual representation, an LSTM for storing linguistic
context in an answer, and a fusing component
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to combine the first three into an answer. They
also create a multilingulal (Chinese and English)
dataset, FM-IQA, to train and evaluate their model.
An overview of their neural network can be seen
in Figure 4.

Compared to Neural-Image-QA, mQA’s “en-
coder" and “decoder" LSTMs do not share
weights, and learn distinct parameters. Their only
shared component is the word embedding. The
authors chose this network structure primarily be-
cause there are different textual properties (such as
grammar) between the question and the answer.

Their network is structured as follows:
1) The first part of their network encodes a nat-

ural language sequence into a dense vector
representation. First, they map a one-hot vec-
tor of each input question word into a dense
semantic space by feeding the words into
a 512-dimensional word embedding layer.
Then, this dense semantic representation is
piped into an “encoding" LSTM layer with
400 memory cells.

2) To capture the image features, MQA uses a
CNN pre-trained on GoogLeNet.

3) A second word embedding layer and “en-
coder" LSTM which is structurally similar
to the first LSTM encodes the information
about the current word and previous words
in the answer into dense semantic represen-
tations. The activation of the memory cells
for the words in the generated answer and
the word embeddings are then fed into the
fusing component.

4) A fusing layer takes the outputs of the previ-
ous 3 layers to predict the next word in the
answer.

5) Finally, an intermediate layer that maps the
dense multimodal representation from the
fusing layer back into a dense word repre-
sentation. This is piped through a softmax
layer to predict the probability distribution
of the next word in the answer.

They jointly train the two LSTM layers and
the fusing layer on their dataset, which contains
150k images, 200k Chinese and English question-
answer pairs, and with no constrains on question
types. In addition to the natural language dictio-
nary, the authors also add the words “<BOA>"

and “<EOA>" into the dictionary, corresponding
to the beginning of the sentence and end of the
sentence. To generate an answer, they start with
a “<BOA>" and use the model to calculate the
probability distribution of the next word.

B. Attention Mechanism

The language-image embedding approach gen-
erally contains a vision, question understanding,
and answer generation portion. Generally, the vi-
sion part uses a CNN to extract visual features,
while the question uses either a BoW or RNN in
congruence with a word embedder to encode ques-
tion semantics into a dense vector representation.
Lastly, the answer generation portion generates an
answer using the visual and textual representations
of the input. While this approach works, it does
not take advantage of the relationship between the
image and the question/answer.

The intuition behind the attention mechanism
approach is that using an attention mechanism in
the VQA model should exploit the relationships
found between the image and question/answer
pairs by using a question to guide what parts of
the image to “focus" on. The creators of these
models posit that knowing where to look to answer
a question correctly ignores the noise of irrelevant
information in the image.

Fig. 5: Visual7W architecture for “pointing" task
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Fig. 6: “Where To Look" architecture

Visual7W. In addition to the Visual 7W dataset,
[20] provides an attention-based model for
grounded VQA, by encorporating attention into the
typical LSTM-based model. Their model follows
the familiar two-stage process: an “encoding" step
and “decoding" step. A visual overview of their
architecture can be seen in Figure 5.

At the encoding stage, the model reads the
image and the question tokens word by word and
memorizes the image and question into a hidden
state vector (in an LSTM). For each word, it
computes an attention term based on the previous
hidden state and the features, which indicates what
region to focus on. In the decoding step, their
model selects an answer from the multiple choices
based on its memory (the softmax layer).

They encorporate attention into the standard
LSTM model with the rt term below:

it = σ(Wvivt +Whiht−1 +Wrirt + bi)

ft = σ(Wvfvt +Whfht−1 +Wrfrt + bf )

ot = σ(Wvovt +Whoht−1 +Wrort + bo)

gt = σ(Wvgvt +Whght−1 +Wrgrt + bg)

ct = ft � ct−1 + it � gt
ht = ot � φ(ct)

where σ()̇ is the sigmoid function, φ()̇ is the
tanh function, and � is the element-wise mul-
tiplication operator. The rt term is the attention
mechanism, which is just a weighted average of
features that is created using the LSTM’s previous
hidden state and question text features.

Where To Look. In [12], Shih et al. propose an
image-region selection mechanism that identifies
which region of an image is relevant to answer-
ing a question, and a learning framework with a
margin-based loss to solve multiple choice VQA
problems. An overview of their system can be seen
in Figure 6. The input to their model is a question,
a potential answer, and image features from a set of
automatically selected candidate attention regions.
Then, their model processes the input as follows:

1) Parse question and answer encoded using
word2vec and a three-layer network

2) Encode the visual features for each region
using the top 2 layers of a CNN trained on
ImageNet

3) Embed language and vision features are and
compare with a dot product

4) Softmax to create a per-region relevance
weighting

5) Using the weights, create a concatenated
vision and language feature vector

6) Send weighted average features to a 2 layer
network for a final confidence score

The “Region selection layer" is every layer
of their network but the last step. This layer
selectively combines incoming test features with
image features from relevant regions of the image.
The model determines relevance by projecting
the image and text features into a shared space
and computing an inner product between each
question-answer pair and all available regions.
The inner product forces the model to compute
region/question relevance as if it were computing
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Fig. 7: Multimodal Compact Bilinear Pooling with Attention architecture

similarity.
Lastly, another key feature of this system is the

margin-based loss function. The authors explicitly
define the goal for their VQA system to maximize
a margin between correct and incorrect choices in a
structured way. Their reasoning behind this is their
evaluation dataset (VQA) has 10 answers for each
question, which may not all be the same; for exam-
ple, “What color is the scarf?" could have “blue"
or “purple" answers. To take this discrepency into
account, they create a margin-based loss – they
change their loss function to require that the score
of the correct answer is at least some margin above
the score from the incorrect choices. For example,
if 6/10 of the annotators answer an answer a and
4 annotators answer b, then the answer a should
outscore b by at least 40%.
Multimodal Compact Bilinear Pooling with At-
tention. The previous approaches to combining
two-vector representations for image and text rely
on concatenating vectors or applying an element-
wise sum or product. This generates a joint rep-
resentation, but the authors in [8] claim that it is
not expressive enough to represent the complex
relationships between the input image and text.
Instead, the authors propose a multimodal compact
bilinear pooling (MCB) based model to get a joint
representation. An overview of their method can
be seen in Figure 7.

Bilinear pooling computes the outer product
between two vectors (vs. an elementwise product),
which creates a multiplicative interaction between

all elements of both image and text vector. Their
approach is based on research on bilinear pooling
models that show that it is a beneficial method
for fine-grained classification on vision-only tasks.
Despite its performance, a problem with bilinear
pooling is its high dimensionality, so not many
models use it. To combat this, the authors incorpo-
rate previous research about compressing bilinear
pooling into their model.

The model extracts representations for the image
and the question, pools the vectors using MCB,
and gets the answer as a multi-class classifica-
tion problem with 3k classes. Images features are
extracted by a 152-layer residual network that is
pretrained on the ImageNet dataset.

To incorporate spatial information, they incor-
porate soft attention into their MCB pooling. For
each spatial location in the visual representation,
their method use MCB pooling to merge the visual
feature with the language representation. After
pooling, they use two convolutional layers to get
the attention weight for each location.

In this paper, the authors also propose three
VQA architectures – one for VQA with attention
(discussed here), another for VQA with attention
and answer encoding (a solution for VQA prob-
lems with multiple choice questions), and another
for VQA with visual grounding (where the goal is
to predict a bounding box that corresponds to the
question).
ABC-CNN. In [14], Chen et al. propose an
attention-based configurable CNN (ABC-CNN) to
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Fig. 8: ABC-CNN architecture

aid in question-guided attention, where the input
question determines a region of interest within the
image. Their model explicitly contains “a vision
part", “a question understanding part", “an answer
generation part", and “an attention extraction part".
An overview of their system can be seen in Figure
8.

For the vision part, ABC-CNN uses the deep
CNN VGG-19, to extract visual features into a
spatial feature map, I . This model is pre-trained
on a 1000-class ImageNet classification challenge
dataset and a fully convolutional segmentation
neural network pre-trained on the PASCAL 2007
segmentation dataset.

For the question understanding part, they use
an LSTM to learn the dense question embedding
vector, s, to encode semantic information.

The attention extraction part encodes question-
based attention information as a question-guided
attention map (QAM), which is generated by
searching for visual features in the spatial feature
map that correspond to the input query’s semantics.
This is done using a CNN and convolving the
visual feature map with a configurable kernel. The
kernel is generated by transforming the question
embeddings from semantic space into visual space,
which contain the visual information determined
by the intent of the question. More intuitively, the
question “What color is the umbrella?" should
generate a kernel that only selects for “umbrella"
visual features.

For the answer generation, they generate single-
word answers with a multi-class classifier with

softmax activation. The multi-class classifier is
based on the original feature map, the question em-
bedding, and the attention-weighted feature map.
The weighted feature map is generated by an
element-wise product between the feature map,
I , and the attention map, m. While their method
focuses on single-word answer generation, they
can extend their method to generate full sentences
by using an RNN decoder.
Compositional Memory. In [15], Jiang et al.
propose a Compositional Memory for an end-
to-end training framework to fuse local, region-
based visual features with linguistic information,
to combat the loss of fine-grained local features
in traditional, holistic VQA methods. They base
their approach off the idea of “visual facts" –
local visual evidence that can be used to answer
a question – and seek to unearth them through
modeling the interactions between vision and lan-
guage. As an overview, their method traverses
the words in a question one-by-one and explic-
itly combines the linguistic information from the
question with visual information from the image
to create episodes for each time step (a “place" in
processing the input question). Episodes are then
fed into an answer generation component, along
with contextual visual and linguistic information.

An overview of their method can be seen in
Figure 9.

Critical to their method is adding a composi-
tional memory block to the general LSTM-based
approach for VQA, and a second LSTM which
parses the input question and provides input to
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Fig. 9: Compositional Memory architecture, where the left hand side of the figure is an architectural
diagram of the entire network and the right hand side is a close-up look at the internals of the
Compositional Memory block

both the compositional memory block and the
question-answering LSTM.

The compositional memory block consists of
several Region-LSTM and α gates. The Region-
LSTMs share the same parameters and their results
are combined to generate an episode – a block
of fused visual and linguistic features at a time-
step t for a visual region xi. The Region-LSTMs
process input image region contents in parallel, and
dynamically generate visual-linguistic information
for each region. The authors’ implemention of
Region-LSTMs is mostly similar to an implemen-
tation of an LSTM; the primary difference is that
all LSTM parameters (Wq∗, Wh∗, Wx∗, and b∗)
are shared across different regions, although each
Region-LSTM retains its own gate and cell state.

The α gates in the compositional memory block
are conditioned on a previous episode h at time
t − 1, a vector of features for a region Xk, and
the current language feature qt. These gates are
used to generate a weighted combination of region
messages into one episode, where each episode is
then dynamically pooled into image-level infor-
mation. At each time t and region k, an α gate
generates the value αt

k. To summarize region-level
information into an image-level feature, they use
a modified pooling mechanism.
SMem-VQA. In [13], Xu et al. argue that a
major problem with existing VQA models is that
they have no explicit understanding of an object’s
position, while the VQA task necessarily requires
reasoning about multiple objects and their relative
position to each other. Their approach, SMem-
VQA (Spatial Memory VQA) is based on memory
networks, which combine text embeddings with

an attention mechanism and multi-step inference.
Normal memory networks store information about
text, whereas for VQA they should be storing
information about an image, so the authors adapt
the memory network to store the CNN outputs
from different receptive fields. Further, their model
can update the proposed answer based on several
attention stops, which they call “hops" ... this is
equivalent to a person looking at multiple areas of
an image and gathering evidence from all of them
before forming the answer. Thus, SMem-VQA is
a multi-hop memory network with attention. An
overview of their method can be seen in Figure
10.

The input to SMem-VQA is a variable-length
question and an image. First, they represent each
word as a one-hot vector and embed it into a real-
valued word vector, V , which is dependent on the
maximum number of words in the question and the
dimensionality of the embedding space. The image
is converted into image features using a CNN, and
features are mapped to a grid of spatial locations,
S.

Then, the image feature vectors at each spatial
location and the word vectors are embedded into
a common semantic space, using the “evidence"
visual embedding, WA. The authors use WA to
project each visual feature vector, si in S, so
that its combination with the embedded question
words generates the attention weight, Watt at each
location i in the visual grid. They do this through
a process they call “word-guided attention", which
predicts the attention given a question word that
has the maximum correlation between the embed-
ded visual features at each location.
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Fig. 10: SMem-VQA architecture, where the left side of the figure shows an overview of the whole
method, and the right side shows the word-guided attention method

They also introduce a second embedding, WE

– the “evidence" embedding. WE detects the pres-
ence of semantic objects and is used to compute
a weighted sum over the visual features by mul-
tiplying WE by the Watt attention weights vector
gleaned from the “word-guided attention" process.
The resultant vector is the evidence vector, Satt.

Lastly, the “evidence" vector Satt is combined
with the question representation, Q, to predict an
answer for the given question-image pair.

This describes one “hop" in the “multi-hop"
method ... additional hops can repeat the process
to gather more evidence.

Fig. 11: Stacked Attention Networks architecture

Stacked Attention Networks. In [17], Yang et
al. notice that answering a question often requires
multi-step reasoning. They propose stacked atten-
tion networks (SANs) that allow for multi-step
reasoning. A stacked attention comprises of three
components: an image model, a question model,
and a stacked attention model. The image model
uses a CNN to extract high level features, the
question model uses a CNN or LSTM to extract a
semantic vector of the question, and the stacked at-
tention model locates the regions in the image that
are relavant for the given question. An overview
of their method can be see in Figure 11.

Their method can be summarized as follows:
1) Use a CNN to extract high level features

from the image
2) Use either a CNN or LSTM (the authors test

both implementations) to extract a semantic
vector of the question

3) Generate an attention distribution over the
regions of the image by feeding the image
and question feature vectors through a single
layer neural network and a softmax function

4) Based on the attention distribution, calculate
the weighted sum of the image vectors across
all image regions

5) Combine the weighted sum with the question
vector to form a refined query vector. This
vector encodes only the visual and linguistic
information that is relevant to the answer
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6) Iterate on the above query vector by using
multiple attention layers, where each layer
extracts more fine-grained visual attention
information

C. Compositional

So far, all approaches to VQA have used what
Andreas et al. call “monolithic" methods – regard-
less of the network structure and the components
therein (e.g., RNNs, CNNs, LSTMs, BoWs, word
embeddings), previous approaches are necessar-
ily hindered in their non-dynamic structure. Ap-
proaches in the compositional area focus on mod-
ular, changing architectures that adapt themselves
to fit the particular VQA problem. The intuition
behind this approach is that essentially, different
problems (question-image pairs) will require dif-
ferent machine thought processes.

Fig. 12: Neural Module Networks architecture,
with an example modular network in the light grey
box

Neural Module Networks. Andreas et al. propose
the idea of a neural module network (NMN) in
[16]. Inspired by the use of RNNs to encode
a question and train a classifier on an encoded
question-image pair in common VQA literature,
and the use of semantic parsers to decompose
questions into logistical expressions in common
textual and image QA literature, the authors de-
velop a technique for combining the pros of
RNNs with the flexibility and compositionability
of symbolic approaches to semantics. The ratio-
nale behind their approach is that combining both
methods avoids the pitfalls of RNNs (a monolothic
network structure that is invariant despite changing
inputs) and the pitfalls of semantic parsers (limited

in their reasoning ability when merely applied to
reasoning about truth values). Thus, their approach
provides a dynamic, specialized network that rea-
sons about the inputs in the visual and attention
domain. An overview of their architecture with a
sample modular network can be seen in Figure 12.

Their approach can be summarized as:
1) Extract image features using a CNN
2) Read the question using an LSTM
3) Analyze the question with a semantic parser

and use this to determine: 1) the basic
computational units needed to answer the
question, and 2) the relationship of each
computational unit to the others

4) Combine the output from the neural mod-
ule network with predictions from a simple
LSTM question encoder

They define several different kinds of mod-
ules, each with their own types of input and
output messages. Depending on the structure, the
messages may be raw image features, attentions,
or classification decisions. Further, all modules
are independent and composable. They define the
module types as:

1) Find[c]. This module convolves every posi-
tion in the input image with a weight vector
to produce a heatmap (also known as an
unnormalized attention), where c is the item
they want to find.

2) Transform[c]. This module is a multilayer
perceptron with ReLUs, which perform a
fully-connected mapping from one attention
to another. For example, where c = "above",
this module will take an attention and shift
the region of greatest activation upward, and
where c = "not", the module moves attention
away from the active regions.

3) Combine[c]. This module merges two atten-
tions into a single attention. For example,
when c = "and", the resultant attention is
only active in both inputs, whereas when c
= "or", the resultant attention is only active
where the first input is active and the second
is inactive.

4) Describe[c]. This module takes an attention
and an input image and maps both to a
distribution over labels. For example, when
c = "color", the module should return a
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(a) The architecture for the image caption generation model, where the left side shows the conversion of an image into a
vector of image attributes, and the right side shows the use of an LSTM to generate an appropriate caption

(b) The architecture for the VQA model, that allows for the encorporation of external knowledge. Vatt(I), in red, is the
attribute representation of an image that was generated in 13a. Vcap(I), in green, is a vector representation of the generated
caption from 13a. Vknow(I), in blue, is the encorporation of image-relevant external knowledge. The LSTM that all three
vectors feed into generates a single representation of an image, which is then pipelined along with a question ("How",
"many" ... "?") into a series of LSTMs that predict the answer.

Fig. 13: The external knowledge and attributes-based architecture in [33]

representation of the colors in the region of
attention.

5) Measure[c]. This module take an attention
and maps it to a distribution over labels,
and is mostly used for deciding whether an
object exists or counting a set of objects.

To create a network of modules, they first parse
each question with a Stanford Parser to obtain
a universal dependency representation. This both
provides an abstraction of the original sentence and
reduces complexity by bucketing similar words to-
gether (for example, “kites" into “kite"). Then, they
express the primary part of the sentence’s meaning
in a symbolic form – for example, “Is there a

circle next to a square" becomes is(circle, next-
to(square). Lastly, they convert the parsed sym-
bolic representation into neural modules through a
static mapping based on the structure of the parse.

The final output of their module network is
combined with a simple LSTM question encoder
for two reasons: 1) It allows them to model
underlying syntactic regularities in the data that
cannot be captured in their neural module network
because the NMN’s parser simplifies the question
too aggressively, and 2) It allows them to capture
semantic regularities in the face of missing or low-
quality image data.
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D. Knowledge-Based

The previous three methods have been focused
particularly on question-image pairs where the
image contains sufficient information to answer
the question. However, these methods are useless
when external knowledge is required, as a network
can only draw from the (insufficient) information
given in the input question and image.
Attributes and External Knowledge. In [33], Wu
et al. propose a CNN and LSTM based model for
the image captioning task, but modify the network
to encorporate external knowledge and common
sense for the VQA task. Intuitively, they do this
by fusing an automatically generated caption of the
image with information extracted from an external
knowledge base, where both are represented as
text. An overview of their original image caption
network and their modified network can be seen
in Figure 13a and Figure 13b, respectively.

First, the authors build a network to solve the
image captioning task. Their network contains an
image analysis portion and a caption generation
portion. For the former, they train a deep CNN to
solve the multi-label classification problem, where
the labels are a set of attributes commonly found in
image captions. These attributes can be any part of
speech, as they are generated from image captions
and not hard-coded to be nouns or attributes.
The authors represent an image in terms of its
attributes by creating a fixed-length vector Vatt(I),
where the length is the size of the attribute set,
and each dimension contains the probability that
that attribute exists in the image. For the caption
generation portion, they train a caption generation
model by maximizing the probability of the correct
description for a given Vatt(I). They use an LSTM
to do this part. Figure 13a shows a visual overview
of this method.

Then, they modify their caption generation
model to encorporate external knowledge and
solve the VQA task. They use their image caption
generation model to generate Vatt(I), a represen-
tation of the given image’s attributes. Then, they
create a vector representation, Vcap(I), of the gen-
erated image caption by average pooling the five
hidden states of the LSTM in the caption genera-
tion part of their old model, within which is con-
tained the representation of the generated caption.

Lastly, they encorporate relevant external knowl-
edge, Vknow(I), by querying DBpedia, a structured
database of information from Wikipedia, for the
top 5 most strongly predicted attributes for an
image and converting the query results into a fixed-
length feature representation with Doc2Vec. These
three vectors (Vatt(I), Vcap(I), and Vknow(I)), are
combined into one single representation with an
LSTM, which is then used as input along with a
question to an LSTM-based VQA model. This can
be seen in Figure 13b.
KVQA. In [26], Shah et al. propose the fol-
lowing dilineation between VQA questions: con-
ventional VQA, commonsense knowledge-enabled
VQA, and world knowledge-aware VQA. The first
answers questions that can be trivially solved
with no knowledge, not even complex reasoning
– questions such as “What color is the ball?" or
“How many people are in the image?". The second
requires knowledge about common nouns, such
as knowing that “a microphone" is “the item in
the image that amplifies sound". Lastly, the third
requires information about named entities in the
image, to answer questions such as “Who is to
the left of Barack Obama?" or “Do all the people
in the image have the same occupation?". They
propose a VQA dataset, KVQA, to deal with the
third type of question.

IV. FUTURE WORK

Future areas of research for VQA are split into
primarily two areas. Some of the latest work has
pivoted into defining a narrower, more specific
subset or variation of the original VQA problem,
and propose models to solve these more domain-
constrained problems. [38], published in 2020, fo-
cuses on the problem of video question answering
– a problem which provides an extra dimension-
ality of complexity. [36] proposes a VQA model
and dataset that can read and reason about text in
the provided image. [35] proposes a VQA model
that both reads text in an image and encorporates
external knowledge about the text. While the pre-
vious work focuses on narrowing the scope of
the problem to unexplored dimensionalities, other
work focuses on perfecting the techniques we
currently have for standard VQA. [39] augments
the VQA task with semantic information to achieve
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better performance, while [37] focuses on explain-
ing the reasoning behind a VQA model’s decision.
Further, the problem of external knowledge-based
VQA is still a new sub-area, and work in that area
has not sufficiently exhausted its possibilities and
problems yet.

On the other hand, as the numerous authors in
section II prove, early results for VQA models
have overestimated their performance because the
datasets they work on are not only biased, but the
entire area of VQA is particularly prone to dataset
bias if the datasets are not carefully constructed.
Further, as more and more specific subproblems
emerge, specific datasets must be made to acco-
modate them, such as KVQA for questions that
require named entity external knowledge, TextVQA
for questions that require reading text in the image,
and imSituVQA for imSitu verb semantic annota-
tions [26] [36] [39].
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