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I. INTRODUCTION

There is a simultaneous push and pull for the
development of production-ready, state of the art
augmented reality (AR) applications; the produc-
tion of more and more AR devices pulls the
development of AR applications, while the desire
for AR applications from the travel, entertainment,
manufacturing/construction, and advertising indus-
tries (to name a few) push their development.
As application developers create more production-
ready AR applications, they will have to consider
the performance and security requirements of these
applications.

Security AR applications that display 2D or
3D objects on the user’s AR device need some
spatial representation and understanding to be able
to render the object correctly — to make an object
appear on the 2D camera plane as if it were ”in real
life”. This spatial representation can be as simple
as detecting the user’s 3D pose in relation to a
tracker that exists in real life, or as complex as
a dense point cloud that effectively functions as a
map for place detection.

Trackers can be any 2D object with a known size
and shape, but frequently QR codes or apriltags
[1] are used. They work well with AR applica-
tions, require little overhead for setup, and are
”secure” because they never create a visual map
of the environment. However, they are clunky for
production applications because they must remain
in the physical environment for the application to
continue working. In some cases, keeping a printed
QR code on all physical surfaces that can be aug-
mented might be visually distracting — imagine
walking down a busy street without an AR device
and seeing QR codes on every surface. In others,
it’s completely unacceptable — imagine wanting
to display yesterday’s notes on a whiteboard with
an AR device, but having to write around a QR

code any time you want to use the whiteboard as
an actual whiteboard.

For a spatial representation that does create a
visual map of the environment, many applications
may not want to allow the user to access the
map in its entirety. Buildings that contain restricted
areas as well as public-facing areas, for example,
might want to allow a user that is already granted
physical permission to a restricted area to be able
to seamlessly view AR objects around them, but
not want to allow a user who is not physically in
the restricted areas to have access to the full map.
Simply put, users should only be able to access
only map information that is around their physical
location.

While approaches to securing information from
one user to another within a device exist, edge
computing offers a viable alternative to the prob-
lem of map security. If only relevant, vetted infor-
mation is sent to an AR device, that device can
never retrieve map information internally.

Performance AR applications that are meant
to be production-ready and deployed in real en-
vironments have a real-time requirement for frame
processing. Because AR applications are nearly
always visual and small drops in frame rate and
rendering lags are easily perceivable to users,
maintaining reasonable performance is critical to
the success and adoption of any AR application.
Further, the devices that AR applications run on are
inherently resource constrained - they are, at best,
new mobile phones, and at worst, AR headsets.
With the predicted end of Moore’s law, application
developers cannot rely on better hardware to fix
any performance problems.

Previous approaches to latency optimization in
AR environments focus on the rendering side [2] or
on splitting computation between client and servers
[3]. A core limitation to latency optimization that
[2] identified is that proprietary headsets don’t al-



Fig. 1. Our system architecture

low applications to see or modify any internals, so
any optimizations must be done at the application
layer.

Given the above considerations, our project
focuses on implementing a trackerless AR ap-
plication that splits computation between a mo-
bile phone and edge device. We also provide
an overview of the different approaches to place
recognition and pose estimation as they pertain to
AR applications. The rest of the report is structured
as follows: Section II provides an explanation of
our application’s architecture, with an overview of
our vision pipeline. Section III provides an in-
depth discussion of the problems of place recogni-
tion, pose estimation, and rendering as they apply
to AR applications, with an overview of differ-
ent approaches for each. Section IV-V provides
discussion of two techniques we looked into but
did not end up working with — ARToolkitX for
tracker detection, pose estimation, and rendering,
and OpenGL for rendering.

II. APPLICATION ARCHITECTURE

Our application splits the vision pipeline imple-
mentation between a client and a server. The code
for the server can be found in [6] and the code
for the client can be found in [7]. An overview of
the architecture can be seen in Figure 1. Offline,
we calibrate the camera of our test device, using
OpenCV’s cameraCalibration function and
a printout of a chessboard, to get the camera
calibration matrix (see section III-A for a more
detailed explanation).

A. Place Database

We also provide a place database for localiza-
tion — it is structured as a series of places with
known surfaces for projection. Both places and
surfaces are image files, where each place is a
photo of a location, each surface is a photo of a
2D plane (we used textbooks and whiteboards, but
anything could be used), and each surface corre-
sponds to a plane to project AR objects onto. We
also provide a surface occurrences file, which lists
every surface that appears in every place and the
2D image coordinates of the surface. Previously,
we attempted to forgo the surface occurrences step
and perform template matching to automatically
detect surfaces, but we found that template match-
ing algorithms did not perform well when the
template to match (a surface) was smaller than
~1/4 of the scene (a place).

During setup, we link places and surfaces to-
gether in memory, calculate the homography for
each surface in each place (see section III-C for
a detailed explanation on the math behind homo-
graphies), and perform feature detection on each
place image. Because these steps will need to be
taken during runtime for every query, we can save
some computation time by front-loading them and
saving them to a database.

B. Client

The client is an Android application that re-
trieves camera frames from the Android device’s
camera, uses OpenCV to perform feature detection
on a frame, and sends the feature descriptors and



keypoints to the server. Upon a response from
the server, the client uses OpenCV to render the
surface on the camera frame.

C. Server
On every query, the client sends a set of fea-

ture descriptors and keypoints to the server. Upon
receiving these, the server:

1) Create feature matches from Iq to all images
in the database. We found that using ORB
descriptors gave the best visual results out
of all the descriptors we tried (SURF/SIFT,
ORB, and BRIEF).

2) Narrows feature matches to only good
matches, using the threshold test with a ratio
threshold of .6.

3) Estimate a homography using good matches
between Iq and all images in the database. If
there are fewer than 10 matches or we cannot
find a homography given the matches, that
image is discarded.

4) Discard image matches with ”unviable” ho-
mographies. A homography is unviable if
fewer than 50% of the original feature
matches still correctly match when applying
the homography (ie. there are fewer than
50% inliers).

5) For the image match with the largest amount
of inliers, Imatch, calculate the composed
Hsurface→image match ∗ Himage match→query image for
all surfaces that appear in Imatch. Remem-
ber that Hsurface→image match has been pre-
computed during the offline step. This com-
posed homography describes the series of
transformations required to transform the
unmodified surface, to the image space of
Imatch, to the image space of Iq.

6) If any image matches with viable homogra-
phies (that are not Imatch) contain surfaces
that were not found in Imatch, repeat step 5 for
them. This ensures that all possible surfaces
that appear around Iq are accounted for, just
in case they don’t appear in Imatch.

7) Decomposes each composed homography
into rotation and translation matrices. See
Appendix III-E for an example of homog-
raphy decomposition.

8) Sends the rotation and translation matrices
for all surfaces to the client.

D. Network Serialization

The image captured by the phone/client cam-
era ranges from 40KB-60KB on the storage but
transferring the image over the network can lead to
unnecessary network traffic and hinders the main
purpose of a real time application.

However, as the client just needs to transfer the
feature descriptors and key-points to the server the
same is decomposed on client side using the API
docs of OpenCV.

The feature descriptors can be extracted into an
array of integers, float-points, double or byte which
is based on the type of Mat object returned by
type() API call on the Mat object. The target type
is classified using the CvType enum defined in the
class.

The 8 enums are classified as CV 32S,
CV 32SC2 and CV 32SC3 correspond to an array
of integers, CV 32F, and CV 32FC2 correspond
to an array of float type, the set CV 64F and
CV 64FC2 represent a double array and the type
CV 8U utilizes a byte array to store the information
related to the feature descriptors.

Once extracted the corresponding data type
along with the details of size of the array and type
is transferred over the network socket. Then the
same information is used to reconstruct the Mat
descriptor object back on the server side.

The key-points in OpenCV is represented
by an array of KeyPoint object. Now
the API docs of class KeyPoint in
org.opencv.core.KeyPoint lead us
to decompose key-points into the following listed
parameters:

1) angle (a float parameter representing com-
puted orientation of the key-point, -1 if not
applicable)

2) class id (an integer parameter representing
object ID, that is used to cluster key-points
by an object they belong)

3) octave (an integer representing the pyramid
layer, from which the key-point has been
extracted)

4) Point (an object representing the x and y
float coordinates of the key-point)

5) response (a float parameter which denotes
the response by which the strongest key-
points have been selected)



6) size (a float parameter representing the di-
ameter of the useful adjacent area).

Once for each image these parameters are de-
composed, they are transferred as an ArrayList
of their respective types over the network socket.
The collected information by the server is used to
reconstruct the each KeyPoint object and get back
the old key-points from the original image.

III. AR VISION PIPELINES

Whether an AR application relies on trackers or
builds a map of the environment, projects 2D or
3D objects, the general vision pipeline remains the
same. The application must first find a surface on
which it should project an object, find the correct
way to transform the object into the 2D plane, and
render the object.

A. Camera Calibration

For many of the following techniques, getting
the correct result relies on having a calibrated
camera. Based off of the pinhole model, the camera
calibration matrix (the intrinsic matrix), K, defines
the way in which coordinates in the camera’s
coordinate system map to coordinates in the image
plane.

K =

fx s x0

0 fy y0
0 0 1

 (1)

The camera calibration matrix remains static
for the same camera, for the same focal length.
Thus, it can be calculated offline and reused for
the same camera. In production applications, a
camera calibration matrix database can be created
for common AR devices and the correct matrix can
be retrieved for each user’s device. If no database
entry exists for the user’s camera, an application
can try to construct a matrix from the user’s video
feed, but it would need:

1) At least 15 frames to get good results
2) A 2D object with known dimensions (a

tracker can double as a calibration target)
3) Widely varying positions of the 2D object in

each of the provided images
Many applications for camera calibration exist,

and all follow a similar process — a user provides
images (whether through a directory of images or

a realtime video feed) taken with the target camera
of a 2D object with known dimensions in various
configurations. OpenCV’s camera calibration func-
tion uses a printout of a chessboard; AprilTag’s
application uses AprilTags. For our application, we
used the OpenCV function with a printout of a
chessboard, pre-computed the camera calibration
matrix offline, and used the raw matrix in our code.

On top of the calibration matrix K, the camera
calibration process can also glean camera distor-
tion coefficients, which can further be used to
modify the points in the image plane. However,
our application does not use distortion coefficients
to modify our results.

B. Converting Between Coordinate Spaces

Given 3D, real world coordinates
(X
Y
Z
1

)
of an

object we would like to project, we need to convert
them to pixel coordinates

( u
v
1

)
in the image plane.

The camera calibration matrix, K, describes a
way to convert 3D coordinates in the camera’s
coordinate space to 2D coordinates on the image
plane.

The rotation and translation matrices (the extrin-
sic matrix), describe a way to convert 3D coordi-
nates in real life to the camera’s 3D coordinate
space:

[
R T

]
=


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (2)

Thus, one can find
( u
v
1

)
with the following

formula:

s

uv
1

 = K
[
R T

] 
X
Y
Z
1

 (3)

For projecting a surface onto known points in a
scene, the pixel values of the surface are subbed
for X and Y , and all Z values are 0. The pixel
values of its known 2d, projected location are u
and v.

If we want to project either a surface onto known
points in a scene (as we do in the offline database



setup portion) or if we want to project a scene
into another scene (as we do when we respond to
a query image), we also need to find rotation and
translation matrices.

C. Template Matching With Trackers
If an AR application is using trackers, finding

the surface to project an object onto becomes a
problem of template matching, where the template
is an image of the tracker.

If the end goal of the application is to project
a 2D image, then the application merely needs to
calculate a homography (an affine transformation
between two image planes) that will transform the
2D object into the image plane of the query image.
In this scenario, the camera calibration matrix is
not needed — a homography gives us a way
to convert 2D image coordinates to different 2D
image coordinates, so no conversion from a 3D
camera plane is needed.

This process is essentially that which occurs
when we set up the place database offline. The
template, an image of a surface, is matched to
a scene, an image of a place. However, for the
final application which does not use trackers, we
need a way to get rotation and translation matrices
between the matched scene and the query scene.

D. Place Detection Without Trackers
If the application is not using trackers, it must

use other information in the environment to find
the user’s location. This problem is much closer to
the problem of place detection. Many state-of-the-
art place detection approaches involve building a
3D, virtual, visual representation of the real world.
SfM (structure from motion) is a commonly-used
technique to build this visual representation using
only camera frames taken from a moving camera.
However, we ultimately only care about our cam-
era’s relation to a ”virtual” surface, so the overhead
of SfM algorithms might not be necessary.

An alternative approach to SfM is to feature
match a query image with a database of images
with known locations. Our application’s approach
takes this a step further — the database of im-
ages doesn’t technically need known locations,
it merely needs known rotation and translation
vectors between an unmodified object visible in the
frame and the frame. We calculate these rotation

and translation vectors by fitting a homography
between a surface image and a place image, and
decomposing the homography into rotation and
translation vectors.

E. Homography Decomposition

Regardless of the technique used, a camera’s
intrinsic parameters need to be provided to the
homography decomposition function so they can
be decoupled from the homography itself.

The OpenCV function
decomposeHomography can be used to
decompose a homography into rotation and
translation matrices that satisfy the equation.
Because the result of decomposing the
homography is not unique, it returns a list
of viable options.

We also tried decomposing a homography by
hand, and that gave similar results to the openCV
function — there don’t seem to be any benefits to
doing it by hand.

IV. ARTOOLKITX

ARToolkitX is an application that provides an
easy-to-use API for AR applications. It handles
tracker detection, pose estimation, and openGL
rendering, so all the internals are hidden to An-
droid application developers. Because ARToolkitX
implements a vision pipeline very similar to the
one for our application, it appears to be a good
candidate for building our application off of. How-
ever, a thorough review of the ARToolkitX code
(open-sourced on GitHub) [5] reveals that none of
the modules can be meaningfully offloaded — that
is, some modules can be offloaded, but it would
require sending too many bytes over the network.
Further, ARToolkitX relies on tracker detection for
object placement, and most of the API cannot be
easily decoupled from this. Though we did not end
up using ARToolkitX to render objects or detect
trackers, we provide the following overview of the
modules found in Figure 2.

A. Module Overview

ARVideoSource Provides video frames to the
tracking module, and contains information about
video (size, pixel format, camera params, raw
video data). Because this module relays camera



Fig. 2. ARToolkitX architecture

input, it can’t be meaningfully offloaded — send-
ing entire camera frames over the network at any
reasonable frame rate would be too expensive.

ARTracker An extendable class that defines
functions to process camera frame data, adds mark-
ers (trackers) to the environment, and loads the
database of markers. Two subclasses extend this
class: ARTracker2D and ARTrackerSquare.
To offload this to an edge device, we would need
to offload the entire video frame contents.

ARTrackable This is a base class for
supported trackable types. ARToolkitX
implements two trackable types by default:
ARTrackable2D, ARTrackableSquare/
ARTrackableMultiSquare.

ARVideoView Draws the output of an
ARVideoSource to a rendering context. The
largest, and only non-trivial method, here is
draw(), which also cannot be offloaded because
this is the openGL rendering of an object.

V. OPENGL

OpenGL for Embedded Systems (OpenGL ES
or GLES) is a subset of the OpenGL computer
graphics rendering application programming inter-
face for rendering 2D and 3D computer graphics.
To display any graphic on the display it needs to
go through the OpenGL rendering pipeline.

OpenGL graphics rendering pipeline Render-
ing Pipeline is the sequence of steps that OpenGL
takes when rendering objects, see Figure 3

Vertex array It is a list of vertices that define
the boundaries of the primitive. Along with this,
one can define other vertex attributes like color,
texture coordinates etc. Later this data is sent down
and manipulated by the pipeline.

In the pipeline only two components can be
modified which are:

Vertex Shader The vertex specification defined
above now pass through Vertex Shader. Vertex
Shader is a program written in GLSL that manip-
ulate the vertex data. The ultimate goal of vertex
shader is to calculate final vertex position of each
vertex. Vertex shaders are executed once for every
vertex(in case of a triangle it will execute 3-times)
that the GPU processes. So if the scene consists of
one million vertices, the vertex shader will execute
one million times once for each vertex. The main
job of a vertex shader is to calculate the final
positions of the vertices in the scene. Also vertex
shader can pass the data down the pipeline to the
Fragment shader to process it further.

Fragment Shader This user-written program in
GLSL calculates the color of each fragment that
user sees on the screen. The fragment shader runs
for each fragment in the geometry. The job of the



Fig. 3. OpenGL rendering pipeline

fragment shader is to determine the final color for
each fragment. We used .mtl file of an object which
contains color information for an object.

A. OpenCV to OpenGL

We tried converting rotation and translation vec-
tors in OpenCV to a format that OpenGL can use
to render 3D objects. OpenGL requires a model,
view, and projection matrix that it uses to multiply
with the points of the 3D object to get the projected
2D points of the 3D object. We used the tutorial in
[11] to understand the meaning of these matrices.
While the model matrix roughly works like the
extrinsic matrix and the projection matrix roughly
works like the intrinsic matrix, there are some
discrepencies in the way OpenGL and OpenCV
represent them. While we didn’t get this method
working, here is what we learned.

B. Differences

There are a few main differences between
OpenGL and OpenCV coordinate system represen-
tations. They are:

1) The 3D coordinate system for OpenGL is
arranged differently than OpenCV. We fol-
lowed the explanation in [9].

2) The 2D coordinate system for OpenGL has
the (0,0) pixel in the bottom left corner (as
if the entire image plane were the top right
quadrant in a graph), whereas the (0,0) pixel
in OpenCV is in the top left corner and y
values increase as you go down (as if it were
a matrix with rows and columns).

3) The OpenGL 3D coordinate system nor-
malizes real-world coordinates from [-1, 1].
While some examples online reference that
coordinates for X range from -1 (on the far
left) to 1 (on the far right), and coordinates
for Y range from -1 (on the bottom) to 1
(on the top), we found that, in actuality, the
coordinates for X range from 1 (on the far
left) to -1 (on the far right).

4) OpenGL matrices are represented a little
strangely. See the extrinsic matrix and model
matrix in V-C for an example. Even without
the sign changes, the order of the items in R
and T change.

C. Model Matrix
The extrinsic matrix can be converted into a

model matrix as follows:

Extrinsic =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1

 (4)

Model =


r11 −r21 −r31 0
−r12 r22 r32 0
−r13 r23 r33 0
t1 t2 −t3 1

 (5)

The sign changes account for the different co-
ordinate systems between OpenGL and OpenCV.
Further, notice that r12 is in the (0, 1) spot in the
extrinsic matrix, but the (1, 0) spot in the model
matrix.



D. Projection Matrix
The intrinsic matrix can be converted into a

projection matrix using the formula from [8]:
fx
cx

0 0 0

0 fy
cy

0 0

0 0 −f+n
f−n

−2f+n
f−n

0 0 −1 0

 (6)

where fx, fy, cx, and cy are from the intrinsic
matrix, and f and n are the far and near clipping
planes, respectively. These can be anything, but a
default that many people use for OpenGL is .1 and
1000.

We set the projection matrix directly, but
it’s also possible to call the OpenGL function
glFrustumf to compose the projection matrix
given different variables (most notably, a frustum
and offset). This is the method used in [10],
which purportedly generated good results, but our
implementation of their method didn’t give us any
reasonable results.
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